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Motivating Example

Story: Multiple hospitals test different treatment plans (arms)
Challenges: Heterogeneous feedbacks (biased decisions) & privacy concern

Problems & Solutions (Overview)

One-sentence summary:
Fed UCB is a novel fully-decentralized bandit learning framework that han-
dles heterogeneous data sources with a privacy guarantee.
Problems:

1. (Decentralization) Centralized learning requires soliciting data from dis-
tributed ends to a single server, which might compromise users’ privacy

2. (Heterogeneity) Multiple agents may hold different and heterogeneous
datasets for the same task due to the local bias

3. (Privacy) Directly leaking some information that might appear to be
“anonymized” can be used to cross-reference with other datasets to
breach privacy

Challenges:

1. (Decentralization) No central-controller

2. (Heterogeneity) Bias in local learning & problem may not be solved

3. (Privacy) Protect agents’ privacy in the worst cases during cooperation

Solutions:

1. (Decentralization+Heterogeneity) Gossip UCB

2. (Gossip UCB+Privacy) Fed UCB: Differentially private Gossip UCB

MAB with Heterogeneous Rewards

Problem settings:

• Multi-armed bandit (MAB) with N agents and M arms;

• Each agent i selects an arm ai(t) at time t.

•Xk(t) is supposed to be collected when arm k is pulled at time t. BUT
it is unobservable.

• Actual observation: Xi,k(t) (a locally biased “noisy” copy of Xk(t));

• Relationship: µk = E[Xk(t)], µi,k = E[Xi,k(t)], µk := 1
N

∑N
i=1 µi,k,

µ1 ≥ µ2 ≥ · · · ≥ µM

Goal: Without sharing local observations with a central entity, minimize:

Regret: Ri(T ) = Tµ1 −
T∑
t=1

E
[
Xai(t)(t)

]
.

Information Propagation via Gossiping

Gossiping:

• One edge activated at each t;

• Selected agents on the edge exchange information;

• Others do not update.
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Key challenges:

• Sample counts: (agent i, arm k, time t)
• ni,k(t): the number of observations (determining the quality of deci-
sion);
• ñi,k(t): local estimate of maxj nj,k(t) (controlling the local consis-
tency).

• Sample mean X̃i,k(t) (biased) .

• Estimate of the average reward ϑi,k(t): The gap |ϑi,k(t) − µk| is sup-
posed to decrease with sequential observations and gossiping.

• Upper confidence bound (UCB): Design the UCB Ci,k(t) and select arm:

ai(t) = arg max
k

ϑi,k(t− 1) + Ci,k(t).

Algorithm (sketched):

1. Initialization: Each agent pulls each arm once.

2. Local consistency check using ñi,k(t) (each-t)

3. Locally consistent decision making (each-t):

• Locally consistent → ai(t) = arg maxk ϑi,k(t− 1) + Ci,k(t)

• Consistency violation → push local consistency

4. Gossiping (each-t):

• Gossiping update: ϑi,k(t) :=
ϑi,k(t−1)+ϑj,k(t−1)

2 + X̃i,k(t)− X̃i,k(t− 1);

• Normal update: ϑi,k(t) := ϑi,k(t− 1) + X̃i,k(t)− X̃i,k(t− 1).

Regret Upper Bound for Gossip UCB

Theorem 1. (Regret upper bound for Gossip UCB) For the Gossip UCB

algorithm with bounded reward over [0, 1], and

Ci,k(t) =

√
2N

ni,k(t)
log t + α1, (1)

the regret of each agent i until time T satisfies

Ri(T ) <
∑
∆k>0

∆k

(
max

{
2N

(1
2∆k − α1)2

log T, L, (3M + 1)N

}
+ α2

)
,

where α1 = 64
N 17, α2 = (3M − 1)N + 2π2

3 + 2λ
1/12
2

(1−λ1/3
2 )(1−λ1/12

2 )
.

Remark: The order of Ri(T ) is O(max{NM log T,M logλ−1
2
N}).

Fed UCB: Privacy Preserving Gossip UCB

Differential privacy (DP):

• (Definition) A (randomized) algorithm B is ε-differentially private if for
any adjacent streams {Xi,k(t)}Tt=1 and {X ′i,k(t)}Tt=1, and for all sets
O ∈ C,

P
[
B({Xi,k(t)}Tt=1) ∈ O

]
≤ eε · P

[
B({X ′i,k(t)}Tt=1) ∈ O

]
.

• (Online DP) Guarantee ε-DP on every T .

– (Naive) Adding Laplacian noise Lap(Tε ) to each observation Xi,k(t)

(too large)

– (Partial sum) Adding Laplacian noise Lap(dlog T e
ε ) following a binary

tree.
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(a) Every node in the binary interval tree corresponds to
a p-sum.
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(b) The sum of time steps 1 through 7 can be obtained
by adding the p-sums corresponding to the black nodes.

Fig. 1. Intuition for the Binary Mechanism.

Observe that each noisy p-sum maintains ε
log T -differential privacy by Fact 1. Hence, we can

conclude the ε-differential privacy of the Binary Mechanism.

Theorem 3.5 (Differential Privacy). For T ∈ N, the Binary Mechanism preserves
T -bounded ε-differential privacy.

Utility. We next consider the usefulness of the Binary Mechanism. Each estimated count
B(t) is the sum of at most log T noisy p-sums, and each noisy p-sum contains fresh, in-

dependent Laplace noise Lap( log T
ε ). Therefore, the error at time t is the summation of at

most O(log t) i.i.d. Laplace distributions Lap( log T
ε ). We use the Corollary 2.9 to conclude

the mechanism’s usefulness.

Theorem 3.6 (Utility). For each t ∈ [T ], the T -bounded Binary Mechanism is (O( 1ε )·
(log T ) · √log t · log 1

δ , δ)-useful at time t ∈ [T ].

4. UNBOUNDED COUNTING MECHANISMS

Previously, we mainly considered time-bounded mechanisms, i.e., the mechanism requires
a priori knowledge of an upper bound on the time. We now describe how to remove this
assumption and derive unbounded counting mechanisms from the Binary Mechanism. The
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Example:

Node 4: Noise[1,4]

Node 6: Noise[1,4] + Noise[5,6]

Node 7: Noise[1,4] + Noise[5,6]

+ Noise7

Remark: The order of Ri(T ) for ε-differentially private Fed UCB is
O(max{NMε log2.5 T,M(N log T + logλ−1

2
N)}).


