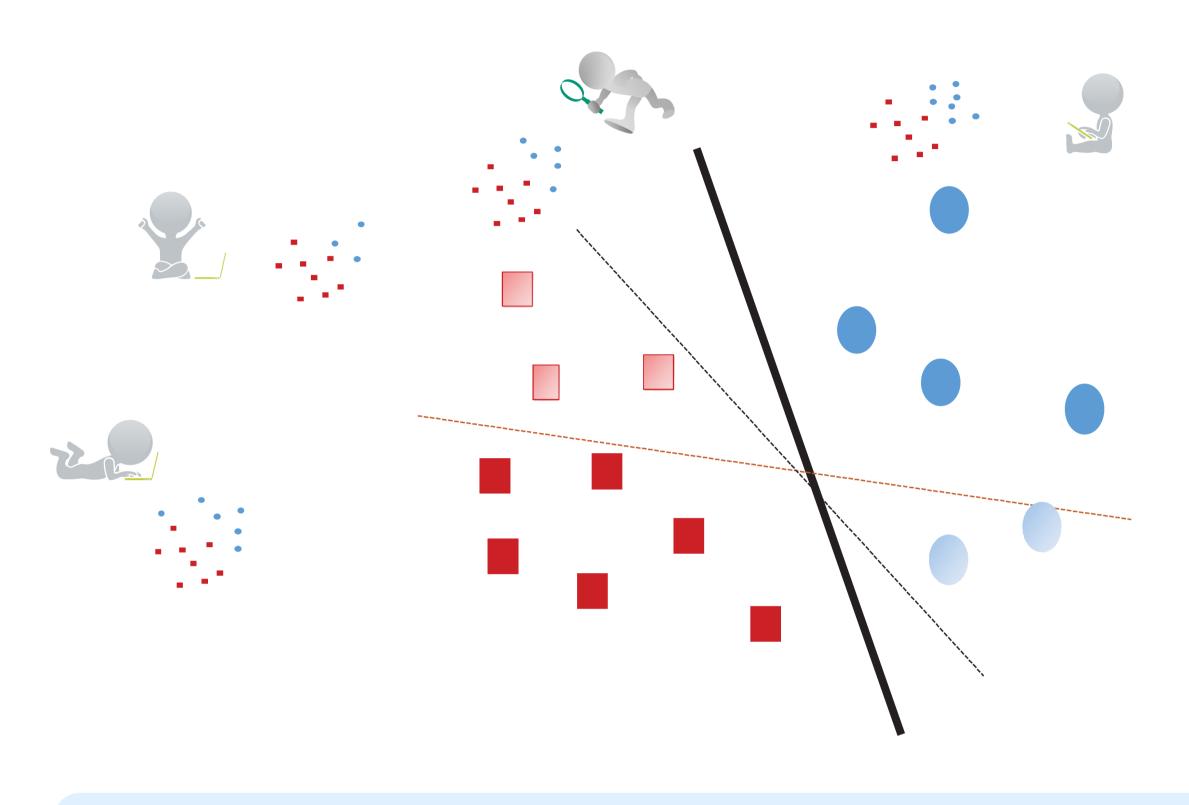


Motivating Example

Story: Multiple hospitals test different treatment plans (arms) Challenges: Heterogeneous feedbacks (biased decisions) & privacy concern



Problems & Solutions (Overview)

One-sentence summary:

Fed_UCB is a novel *fully-decentralized* bandit learning framework that handles *heterogeneous* data sources with a *privacy* guarantee. **Problems:**

- 1. (Decentralization) Centralized learning requires soliciting data from distributed ends to a single server, which might compromise users' privacy
- 2. (Heterogeneity) Multiple agents may hold different and heterogeneous datasets for the same task due to the local bias
- 3. (Privacy) Directly leaking some information that might appear to be "anonymized" can be used to cross-reference with other datasets to breach privacy

Challenges:

- 1. (Decentralization) No central-controller
- 2. (Heterogeneity) Bias in local learning & problem may not be solved
- 3. (*Privacy*) Protect agents' privacy in the worst cases during cooperation **Solutions:**
- 1. (Decentralization+Heterogeneity) Gossip_UCB
- 2. (Gossip_UCB+Privacy) Fed_UCB: Differentially private Gossip_UCB

MAB with Heterogeneous Rewards

Problem settings:

• Multi-armed bandit (MAB) with N agents and M arms;

Federated Bandit: A Gossiping Approach

Zhaowei Zhu^{*†}, Jingxuan Zhu^{*§}, Ji Liu[§], Yang Liu[†] (*Equal contributions) [†]UC Santa Cruz, [§]Stony Brook University

{zwzhu,yangliu}@ucsc.edu, {jingxuan.zhu,ji.liu}@stonybrook.edu

- Each agent i selects an arm $a_i(t)$ at time t.
- $X_k(t)$ is supposed to be collected when arm k is pulled at time t. BUT it is unobservable.
- Actual observation: $X_{i,k}(t)$ (a locally biased "noisy" copy of $X_k(t)$);
- Relationship: $\mu_k = \mathbb{E}[X_k(t)], \ \mu_{i,k} = \mathbb{E}[X_{i,k}(t)], \ \mu_k := \frac{1}{N} \sum_{i=1}^N \mu_{i,k},$ $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_M$

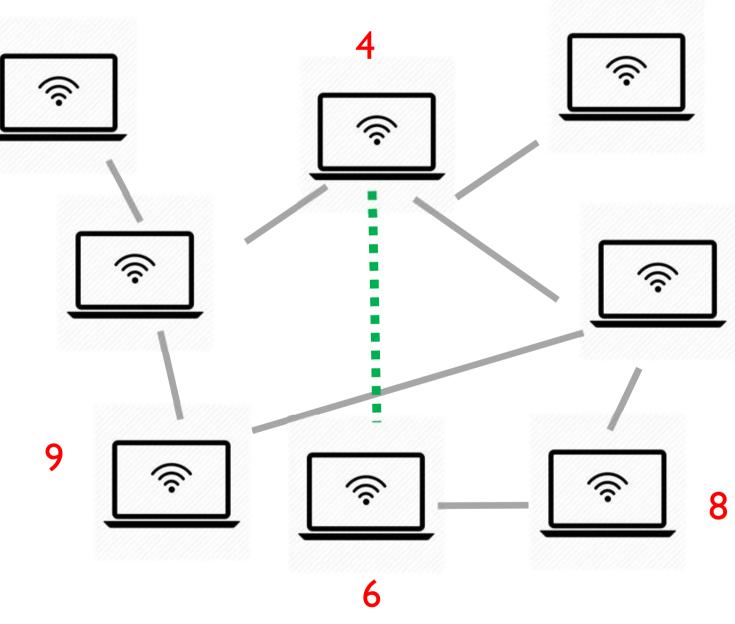
Goal: Without sharing local observations with a central entity, minimize:

Regret: $R_i(T) = T\mu_1 - \sum_{t=1}^T \mathbb{E} [X_{a_i(t)}(t)]$.

Information Propagation via Gossiping

Gossiping:

- One edge activated at each t;
- Selected agents on the edge exchange information;
- Others do not update.



Key challenges:

• Sample counts: (agent i, arm k, time t) • $n_{i,k}(t)$: the number of observations (determining the quality of decision);

• $\tilde{n}_{i,k}(t)$: local estimate of $\max_i n_{i,k}(t)$ (controlling the local consistency).

- Sample mean $X_{i,k}(t)$ (biased).
- Estimate of the average reward $\vartheta_{i,k}(t)$: The gap $|\vartheta_{i,k}(t) \mu_k|$ is supposed to decrease with sequential observations and gossiping.
- Upper confidence bound (UCB): Design the UCB $C_{i,k}(t)$ and select arm:

$$a_i(t) = \arg\max_k \,\vartheta_{i,k}(t-t)$$

Algorithm (sketched):

- 1. *Initialization:* Each agent pulls each arm once.
- 2. Local consistency check using $\tilde{n}_{i,k}(t)$ (each-t)
- 3. Locally consistent decision making (each-t):

 $(1) + C_{i,k}(t).$

- Consistency violation \rightarrow push local consistency
- 4. Gossiping (each-t):

algorithm with bounded reward over [0, 1], and

$$C_{i,k}(t)$$

the regret of each agent i until time T satisfies

$$R_{i}(T) < \sum_{\Delta_{k}>0} \Delta_{k} \left(\max\left\{ \frac{2N}{(\frac{1}{2}\Delta_{k} - \alpha_{1})^{2}} \log T, L, (3M+1)N \right\} + \alpha_{2} \right),$$

where $\alpha_{1} = \frac{64}{N^{17}}, \alpha_{2} = (3M-1)N + \frac{2\pi^{2}}{3} + \frac{2\lambda_{2}^{1/12}}{(1-\lambda_{2}^{1/3})(1-\lambda_{2}^{1/12})}.$
Remark: The order of $R_{i}(T)$ is $O(\max\{NM\log T, M\log 1, N\})$

Remark: The order of $R_i(T)$ is $O(\max\{NM \log T, M \log_{\lambda_0^{-1}} N\})$.

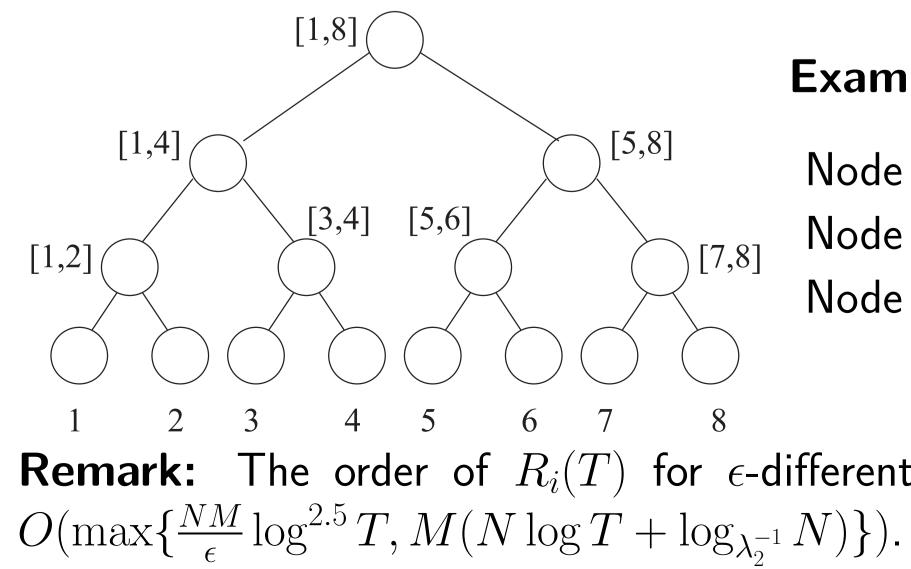
Fed_UCB: **Privacy Preserving** Gossip_UCB

Differential privacy (DP):

 $\mathcal{O} \in \mathcal{C}$,

$$\mathbb{P}\left[\mathcal{B}(\{X_{i,k}(t)\}_{t=1}^T) \in \mathcal{O}\right] \le e^{\epsilon} \cdot \mathbb{P}\left[\mathcal{B}(\{X_{i,k}'(t)\}_{t=1}^T) \in \mathcal{O}\right].$$

- (Online DP) Guarantee ϵ -DP on every T.
- (too large)
- tree.



Stony Brook University

• Locally consistent $\rightarrow a_i(t) = \arg \max_k \vartheta_{i,k}(t-1) + C_{i,k}(t)$

• Gossiping update: $\vartheta_{i,k}(t) := \frac{\vartheta_{i,k}(t-1) + \vartheta_{j,k}(t-1)}{2} + \tilde{X}_{i,k}(t) - \tilde{X}_{i,k}(t-1);$ • Normal update: $\vartheta_{i,k}(t) := \vartheta_{i,k}(t-1) + \tilde{X}_{i,k}(t) - \tilde{X}_{i,k}(t-1)$.

Regret Upper Bound for Gossip_UCB

Theorem 1. (*Regret upper bound for Gossip_UCB*) For the Gossip_UCB

$$=\sqrt{\frac{2N}{n_{i,k}(t)}\log t + \alpha_1},\tag{1}$$

• (Definition) A (randomized) algorithm \mathcal{B} is ϵ -differentially private if for any adjacent streams $\{X_{i,k}(t)\}_{t=1}^T$ and $\{X_{i,k}'(t)\}_{t=1}^T$, and for all sets

-(Naive) Adding Laplacian noise Lap $(\frac{T}{\epsilon})$ to each observation $X_{i,k}(t)$

-(Partial sum) Adding Laplacian noise Lap $(\frac{|\log T|}{\epsilon})$ following a binary

Example:

[5,8] Node 4: Noise $_{[1,4]}$ Node 6: Noise_[1,4] + Noise_[5,6])[7,8] Node 7: Noise_[1,4] + Noise_[5,6] + Noise₇

Remark: The order of $R_i(T)$ for ϵ -differentially private Fed_UCB is